
Constructing Efficient Simulated Moments Using
Temporal Convolutional Networks

Jonathan Chassot∗ and Michael Creel†

February 16, 2024

Link to latest version.

Abstract

We propose a method to estimate model parameters using temporal convolutional
networks (TCNs). By training the TCN on simulated data, we learn the mapping
from sample data to the model parameters that were used to generate this data. This
mapping can then be used to define exactly identifying moment conditions for the
method of simulated moments (MSM) in a purely data-driven manner, alleviating a
researcher from the need to specify and select moment conditions. Using several test
models, we show by example that this proposal can outperform the maximum likelihood
estimator, according to several metrics, for small and moderate sample sizes, and that
this result is not simply due to bias correction. To illustrate our proposed method, we
apply it to estimate a jump-diffusion model for a financial series.

Keywords: temporal convolutional networks, method of simulated moments, jump-
diffusion stochastic volatility, neural networks
JEL classification: C15, C45, C53, C58

∗Faculty of Mathematics and Statistics, University of St.Gallen, Switzerland. jonathan.chassot@unisg.ch
†Universitat Autònoma de Barcelona, Barcelona School of Economics, and MOVE, Bellaterra (Barcelona)

08193, Spain. michael.creel@uab.cat.

1

https://www.jldc.ch/uploads/2023_chassot_creel.pdf

1 Introduction

Understanding real-world phenomena through the lens of applied economics often necessitates
the construction of comprehensive models that accurately reflect the inherent complexity of
their empirical counterparts. However, an increase in model complexity often compromises
the simplicity of statistical inference, posing a significant challenge for economists and econo-
metricians. Particularly, when estimating parameters of an intricate model where a tractable
likelihood and closed-form theoretical moments are non-existent, the challenge becomes even
more substantial, thus warranting specialized methodologies. A widely used instance of such
a methodology is the simulated method of moments (MSM; McFadden, 1989; Pakes & Pol-
lard, 1989), which uses simulated data to replicate moments of the model. Similar to its
predecessor, the generalized method of moments (GMM; Hansen, 1982), the choice of mo-
ment conditions is crucial in determining the estimator’s efficiency, and it is an area that has
received considerable attention in the literature. While it is well-known that overidentifying
moment conditions do not harm the estimator’s consistency, they can result in a significant
increase in bias and variance in finite samples (Donald, Imbens, & Newey, 2009). To counter-
act this issue, several authors have put forth methods to select the best moment conditions
from an overidentifying set (e.g., Carrasco, 2012; Cheng & Liao, 2015; DiTraglia, 2016; Hall,
2015). However, choosing the initial set of possible moment conditions remains a challenge,
and the literature has not yet reached a consensus on the best approach to this problem.
One fundamental reason this problem persists is rooted in the vast set of possible moments
from which one could select. Owing to such complexity, a universally applicable method for
this initial selection process remains elusive in the current literature.

This paper contributes to this ongoing research by proposing a data-driven approach that
utilizes deep neural networks to formulate the set of moment conditions. We aim to construct
an exactly identifying set of statistics that are not only informative but also lead to an
MSM estimator that is approximately fully asymptotically efficient. By “construct”, we
mean that our method bears the advantage of circumventing the challenges of specifying and
selecting the best moment conditions in traditional MSM methodologies. Instead, the ideal
moment conditions are learned in an end-to-end manner by the network, which is trained on
simulated data. To facilitate the application of our methodology, we have implemented our
approach in a Julia package. This package is available for the research community and can
be accessed at https://github.com/JLDC/DeepSimulatedMoments.jl, providing a practical
tool for researchers and practitioners to apply our proposed method in various contexts.

2

https://github.com/JLDC/DeepSimulatedMoments.jl

While our primary focus lies within the framework of MSM and the Bayesian approach to
method of moments estimators as established by Kwan (1999), Kim (2002) and Chernozhukov
and Hong (2003), the technique we propose holds broad applicability to other estimation
methods that rely on informative statistics such as Approximate Bayesian Computation
(ABC; see Grazian & Fan, 2020; Sisson, Fan, & Beaumont, 2018, for a recent survey and
textbook treatment, respectively) or Indirect Inference (II; Gourieroux, Monfort, & Renault,
1993; Gouriéroux & Monfort, 1997; Smith, 1993).

Our method involves fitting a deep neural network that leverages the entire raw sample
data as input and generates the model’s parameters as output. While the network’s output
is a point estimate of the true parameter vector, its interpretation as an exactly identifying
moment condition allows for a straightforward application in the MSM framework and other
simulation-based methods that allow for statistical inference. Although neural networks have
been applied for parameter estimation before (e.g., Akesson et al., 2021; Creel, 2017, 2021;
Fisher et al., 2020; B. Jiang et al., 2017; Wiqvist et al., 2019), our work represents the first
application of temporal convolutional networks (TCNs) in this context. We demonstrate
that our end-to-end TCN-based moment conditions offer superior performance compared
to previously used approaches and lead to an estimator that is competitive with maximum
likelihood estimators.

This paper is organized as follows. In Section 2, we review the literature on neural network-
based parameter estimation, while Section 3 introduces the deep neural network architectures
on which we focus. In Section 4, we present the results of our network-based estimators
compared to maximum likelihood estimates for three test models with tractable likelihoods.
Section 5 provides an empirical example, where we use the TCN-based moments to estimate a
jump-diffusion model for S&P 500 data. Finally, Section 6 concludes the paper and discusses
avenues for future research.

2 Neural Networks for Parameter Estimation

Neural networks are versatile tools with a wide range of applications. Several papers have
used neural networks to estimate the parameters of statistical models, and many of them
have presented results for the moving average order 2 model (presented below, in Section
4.1). After summarizing the methodologies, we present the results to give a rough and
partial summary of the performance achieved thus far for this simple model.

3

In the first approach, researchers summarize the sample data into a vector of statistics
before passing it to the network. The input is of fixed size, which means that the neural
network can remain relatively simple (though it may still have hundreds or thousands of
parameters) and will be comparatively quick and easy to train. Blum and François (2010)
are the first to implement this technique of which we know. They use a single hidden layer
feedforward neural network (FNN)1 with only four nodes. In their work, kernel regression
ameliorates the relatively poor fit that can be obtained from such a rudimentary network by
additional processing of the network’s output. Creel (2017, 2021) use FNNs that are much
larger, with multiple hidden layers and hundreds of nodes per layer. These papers find that
the FNN method can give relatively precise and reliable inferences on the parameters of the
models under scrutiny. However, the approach that uses statistics as the input to the network
is limited by the quality of the statistics used to summarize the sample information before
it is provided to the network. If the statistics are approximately sufficient, then one would
expect little loss of efficiency. However, ensuring that the chosen statistics are at least close
to being sufficient may be difficult or impossible.

The second approach is more ambitious since it utilizes the complete sample information
without summarization that may cause information loss. This method requires the network’s
input dimension to equal the number of variables the model provides multiplied by the
sample size. As a result, the input size is significantly larger than in the first approach
and grows with the sample size. Therefore, a sizeable and intricate network is required to
adequately process the more complex form of the inputs. B. Jiang et al. (2017) was the
first paper to use this technique, where the complete sample data serves as the input to
the network. They use a simple FNN in which all observations are presented as an input
vector without any positional encoding. However, the lack of structured information that
identifies the boundaries between observations in the FNN architecture hinders its ability to
learn the underlying structure of variables in the model. Other researchers have utilized more
intricate neural network architectures, which are capable of processing structured data and
are better suited for learning patterns and sequences. Fisher et al. (2020) use recurrent neural
networks (RNNs)2 to learn the quantiles of the parameters3, while Akesson et al. (2021) use

1See Appendix D.1 for a formal definition of FNNs.
2See Appendix D.2 for a formal definition of RNNs.
3Quantiles may be learned using the “check function” or “pinball” loss function to train the network

instead of the more commonly used mean-square error (MSE) loss function or similar variants, which target

4

convolutional neural networks (CNNs)4 to tackle this problem. Finally, Wiqvist et al. (2019)
propose using a neural network design called partially exchangeable networks (PENs), which
may be appropriate when data has a Markovian structure. As such, this proposal considers
structure in the data set, and the resulting model may benefit from this information. While
these architectures can more easily learn from the structure of a data set than the simple
FNN approach, they do so in different ways. RNNs and CNNs are well-known and widely
used networks, most often for applications other than learning parameters, such as speech
and image recognition (e.g. Goodfellow, Bengio, & Courville, 2016; Graves, Mohamed, &
Hinton, 2013; Krizhevsky, Sutskever, & Hinton, 2012).

To end this section, we summarize existing results on parameter estimation that use the
two approaches and motivate the methods put forth in this paper. We present a simple
comparison based on a straightforward order 2 moving average model (referred to as MA(2),
and presented in detail in Section 4.1, below). For this DGP, using samples of size T = 100,
Akesson et al. (2021), in their Table I, present a comparison of the performance of their
methods with those of B. Jiang et al. (2017) and Wiqvist et al. (2019). The measure for
comparison is the mean absolute error (MAE), normalized by the MAE of the prior mean.
Akesson et al. (2021) compute the normalized MAE for the jth component of the parameter
vector θi = (θi,1, θi,2)

⊤ as follows5:

(1) E% ≈ 4

bj − aj

1

n

n∑
i=1

∣∣∣θi,j − θ̂j(yi)
∣∣∣ , θi,j ∼ Unif(aj, bj)

where n is the number of simulated samples, yi is the entire ith simulated sample generated
at the parameter value θi, drawn from a prior uniform distribution with lower and upper
bounds a = (a1, a2)

⊤, and b = (b1, b2)
⊤, respectively, and θ̂(yi) = (θ̂1(yi), θ̂2(yi))

⊤ is the
output of the network given the ith simulated sample.6

the posterior mean, rather than posterior quantiles.
4See Appendix D.3 for a formal definition of CNNs.
5See equation (8) in their paper.
6The normalization factor is computed by simply using the lower and upper bounds for the MA(2) model’s

two parameters, treating the prior’s support as a rectangle. Although the true support of the prior is the

invertible region, i.e., a triangle, we maintain the original simplification as it makes our results comparable

and provides a more conservative estimate than the true support. Appendix C shows how this normalizing

5

The measure in (1) is averaged across the two parameters of the MA(2) model. In Table
1, we reproduce the information from Table I of Akesson et al. (2021) and add results for
the methods of Creel (2017) and the temporal convolutional networks proposed in this work.
We also add the maximum likelihood estimator (MLE) for reference. The neural network
results are based on 106 training samples. The results in Table 1 show that the approach
based on summary statistics used in Creel (2017) can deliver competitive performance to the
other methods reported, which all use the complete sample as input. However, this approach
bears limitations in that the the choice of summary statistics significantly impact the results.
Finding adequate summary statistics may not be evident for every DGP and this approach
could be inadequate under more complex DGPs. The penultimate row of Table 1 shows
that the TCN approach proposed in this paper outperforms all the other benchmarks and
achieves performance on par (7.41% worse) with that of the fully asymptotically efficient
MLE, displayed in the final row. As shown in Section 4, the TCN method can outperform
MLE with additional training for this sample size.

Method Source E%

FNN B. Jiang et al. (2017) 0.158
PEN Wiqvist et al. (2019) 0.149
CNN Akesson et al. (2021) 0.165
FNN, with statistics Creel (2017) 0.128
TCN This paper 0.116
MLE This paper 0.108

Table 1: E% for MA(2) model (5), T = 100, and 106 training samples, averaged over
n = 10 replications.

3 Neural Network Architectures

This section describes the neural network topologies we utilize to construct moment con-
ditions. To provide clarity for the reader, we focus on the rationale behind our choice of
networks and their specific implementations. Appendix D supplements the necessary formal
definitions of different layer and network types.

factor is derived.

6

For each data-generating process under scrutiny, we implement a long short-term memory
network (LSTM; D.7) and a TCN (D.11). In their seminal paper, Hochreiter and Schmid-
huber (1997) propose the LSTM as an extension of the vanilla RNN architecture (D.5), and,
since their introduction, LSTMs have become a hallmark of sequence modeling. LSTMs have
been particularly influential in time series problems due to their ability to capture long-term
dependencies in data, making them a prevalent choice for various applications, including
natural language processing and financial forecasting (e.g., Bucci, 2020; Chung et al., 2014;
Sutskever, Vinyals, & Le, 2014; Vinyals et al., 2015).

While TCNs have garnered less attention than LSTMs in the literature, they are also
considerably more recent, with the first concepts introduced by van den Oord et al. (2016),
in their so-called WaveNet architecture. Bai, Kolter, and Koltun (2018) find that TCNs
outperform other deep learning architectures in several sequence modeling tasks. TCNs ad-
dress longstanding issues of LSTMs, such as allowing for parallelized training, which speeds
up training time, and introducing an adjustable lookback window, which allows for greater
flexibility in modeling different types of sequences. Furthermore, they typically require signif-
icantly fewer parameters to achieve on-par performance with LSTMs. Accordingly, this work
primarily focuses on TCNs, and we include LSTM architectures as a deep learning baseline.

More recently, attention-based architectures, particularly transformers (Vaswani et al.,
2017), have started to take over LSTMs as state-of-the-art architecture for sequence mod-
eling. This success, however, has come with the price of added complexity. The number
of parameters in potent transformer architectures is typically an order of magnitude larger
than in their LSTM and TCN counterparts. Due to this, transformers require significantly
more computational power to be trained adequately, which often proves to be a barrier for
consumer-grade workstations and also justifies their exclusion in this work.

Before discussing the specific implementations of LSTMs and TCNs, we briefly mention the
process of hyperparameter tuning7 as well as some architecture choices that influence both
networks. First, we do not use L2 weight regularization or dropout layers when training the
networks. While it is commonly well-understood that such techniques help neural networks

7Hyperparameter tuning refers to the process of selecting the optimal parameters for a machine learning

model. These parameters, known as hyperparameters, are not learned from the data but are set prior to

the training process and can significantly impact the performance of the model. See Appendix A for the

hyperparameters of interest.

7

generalize and be more effective out of sample (Srivastava et al., 2014), our setting exemplifies
a special case. Since the data is simulated anew for each epoch, there is no overlap among
individual training steps, making it difficult for the network to overfit. Accordingly, we avoid
regularization methods, to speed up computations. Second, we conducted a grid-search
hyperparameter tuning approach to determine the optimal values for the mini-batch size, the
number of layers, the number of nodes or channels per layer, and optimization algorithms for
each network. Additionally, for the TCN, we conducted a grid-search hyperparameter tuning
approach to determine whether to include a residual connection and to obtain the optimal
values for the kernel width and dilation factor. Table 8 displays the candidate and chosen
hyperparameter values for both networks. Due to the number of candidates, we use early
stopping to simplify the grid-search process and reduce computation time. Notably, many
candidate values produce similarly satisfactory results, indicating that this specific choice of
hyperparameters is not crucial for the success of our approach.

Once the final set of hyperparameters is chosen, we run the TCN for 0.4·106 epochs and the
LSTM for 0.2 · 106 epochs. We found that training for longer is always beneficial during our
tuning process.8 However, it is essential to note that these benefits are marginal past an initial
number of epochs; this, coupled with the fact that recurrent models are not parallelizable
and thus train considerably slower, justifies the lower number of epochs for LSTMs. Finally,
we evaluate the networks every 5 000 epochs for the TCN and 2 500 epochs for the LSTM,
and we keep track of the best model on a validation set with 10 000 observations. During the
last 1 000 epochs of training, we repeat this evaluation procedure at every epoch instead.

The output of the networks, θ̂ has the same dimension as the parameter vector θ, and is
multi-dimensional in all our DGPs. This multi-dimensionality of the output must be consid-
ered carefully when training the networks. Notably, the the components of the parameter
vector can have different ranges and averaging a component-wise metric might lead to a loss
function that is dominated by only a few components. This induces a challenge in training
the network, as components with broader ranges might have a more significant impact on the
loss, leading the networks to focus more on these components when minimizing the loss. We
train our network using the ℓ2-norm, which is equivalent to averaging the squared errors of
each component. To address the issue of different ranges, we normalize the parameter vector

8Note that because the data is simulated anew for each epoch, the training set is not exhausted after a few

first epochs. Effectively, this procedure is equivalent to training on a single dataset of 1 024·0.4·106 = 409.6·106

observations.

8

before training the network. We randomly draw m = 0.1 ·106 parameter vectors and compute
the sample mean and component-wise standard deviation of these parameter vectors.9

µ =
1

m

m∑
i=1

θi, σ =
1√
m

(
m∑
i=1

(θi − µ)◦2
)◦ 1

2

,

with (·)◦2 and (·)◦ 1
2 denoting the Hadamard square and square root, respectively.

Once these two quantities are computed, we can defined a component-wise normalizing
function z(θ) = (θ − µ)⊘ σ, where ⊘ represents the Hadamard division.

L(θ̃,θ) =
∥∥∥z(θ)− θ̃

∥∥∥
2
,

where θ̃ is the raw output of the network and θ is the true parameter vector that generated
the underlying sample. Once the network is trained, we can pass its output through the
inverse of the normalizing function to obtain the final estimate θ̂ = z−1(θ̃). To simplify,
we refer to θ̂ as the output of the network in the following sections since the unnormalized
output is uniquely used in training to mitigate the impact of the parameters’ scale. This
quantity is otherwise not of interest in this work and we report all results in terms of θ̂.

3.1 LSTM

Our LSTM implementation is straightforward and depicted in Figure 1. We pass the input
series through an initial dense layer with a hyperbolic tangent activation function, followed
by two LSTM layers with a hidden size of 32. Lastly, the LSTM outputs are mapped back to
a vector of reals using a dense layer with an identity activation function. Except for the input
and output sizes of the first and last layers, the network’s topology is unchanged between the
different experiments. On the one hand, increasing the number of layers or neurons per layer
does not directly increase the memory of the LSTM, i.e., it does not enable us to capture
longer sequences. On the other hand, the inputs and outputs are relatively low-dimensional
for all DGPs, implying that a moderately-sized network, like the proposed one, ought to be

9Importantly, these parameter draws do not require us to simulate any data. Hence, this step is compu-

tationally cheap.

9

sufficient to model the underlying relationship.

Figure 1 portrays the LSTM architecture implemented in our paper. The blue rectangles
represent the different layers of the LSTM, where the numbers in parentheses stand for the
size of the input and output nodes in each layer.

x(t) ∈ Rk

Dense
(k → 32)
ϕ = tanh

LSTM
(32 → 32)

LSTM
(32 → 32)

Dense
(32 → |θ|) θ̂

Figure 1: LSTM Architecture

3.2 TCN

The TCN architectures we implement follow a similar structure; however, they slightly differ
depending on the observed sequence length. These differences lie in the number of layers
chosen to achieve a particular receptive field size. As our hyperparameter tuning suggests,
we fix the kernel width to 32 and the dilation factor to 2. According to (8), we then choose
the smallest possible number of temporal blocks (see Figure 3) for the receptive field size to
be at least as large as the entire sequence. Proceeding according to this formula gives 3, 4,
5, and 6 temporal blocks layers for the sequence lengths 100, 200, 400, and 800.

Figure 2 depicts the TCN architecture implemented in our paper. The blue rectangles
represent the different layers of the TCN and the red rectangle is the matrix vectorization
operation. The temporal blocks repeat 3 to 6 times depending on the sample size of the
DGP. The outputs of the temporal blocks are vectorized, passed through a convolutional
layer (D.8), and passed through two dense layers (D.2), where the first one is followed by a
hard hyperbolic tangent activation function10.

X ∈ Rk×T . . .

Temporal Block

Temporal Block

vec Convolution
(1× 10)

Dense(
T
10

→ T
10

)
ϕ = hardtanh

Dense(
T
10

→ |θ|
)

θ̂

Figure 2: TCN Architecture

10hardtanh(x) = min(max(−1, x), 1)

10

Figure 3 illustrates the structure of temporal blocks in the TCN. We use a skip connection
(He et al., 2016) with a 1 × 1 convolutional layer (D.8) and pass the inputs through two
iterations of dilated causal convolution layers (D.10) and batch normalization layers (Ioffe &
Szegedy, 2015) which are followed by a leaky ReLU11 activation function. The same leaky
ReLU is applied after the skip connection. This architecture is the same as Bai, Kolter, and
Koltun (2018), with the minor difference that we use batch normalization for simplicity of
implementation instead of weight normalization (Salimans & Kingma, 2016).

Input

Causal Convolution
(1× 32), D = 2

BatchNorm
ϕ = leakyrelu

Causal Convolution
(1× 32), D = 2

BatchNorm
ϕ = leakyrelu

Convolution
(1× 1)

+
ϕ = leakyrelu Output

Figure 3: Temporal Block

4 Results for Models with Tractable Likelihoods

This section explores three data-generating processes for which the maximum likelihood es-
timator exists and can be computed: an MA(2), a Logit, and a GARCH(1,1). The goal is to
see how well neural networks can do compared to an asymptotically unbiased and fully effi-
cient baseline. The neural network estimators we propose can be computed with equal ease,
whether or not the MLE can be computed. We conjecture that if neural network estimators
can achieve performance equal to or better than MLE when a comparison is possible, they
should also perform well in cases where the MLE is difficult compute or intractable.

Table 2 reports the results of our empirical experiment, averaged across the elements of the
parameter vector. Given a true parameter θ and a point estimate θ̂, we gauge the estimator’s
effectiveness based on three metrics which we compute on the sample: the absolute bias, the

11leakyrelu(x) = max(0.01x, x)

11

root-mean-square error (RMSE), and the normalized mean absolute error (NMAE)

∣∣∣bias(θ̂)∣∣∣ = ∥∥∥E [θ̂ − θ
]∥∥∥

1
≈

∥∥∥∥∥ 1n
n∑

i=1

θ̂i − θi

∥∥∥∥∥
1

,(2)

RMSE(θ̂) =

√
E
[∥∥∥θ̂ − θ

∥∥∥2
2

]
≈

√√√√ 1

n

n∑
i=1

∥∥∥θ̂i − θi

∥∥∥2
2
,(3)

NMAE(θ̂) = γ(θ) · E
[∥∥∥θ̂ − θ

∥∥∥
1

]
≈ γ(θ) · 1

n

n∑
i=1

∥∥∥θ̂i − θi

∥∥∥
1
,(4)

where the normalizing factor γ(θ) is the component-wise inverse expected mean absolute error
when the prior mean is used as an estimate. Given the sampling distribution of a parameter
vector θ with entries θi, the normalizing factor γ(θ) simplifies to a constant vector.12 When
θi ∼ Unif(ai, bi) such as in the GARCH(1,1) and MA(2) DGPs, the factor simplifies to γ(θ), a
vector with entries γ(θi) = 4

bi−ai
, and when θi ∼ N (0, 1) such as in the Logit DGP, we obtain

γ(θi) =
√

π
2
. Normalizing the MAE by this factor builds on previous works by Akesson et al.

(2021) and allows for a straightforward interpretation: an NMAE equal to one implies no
new information gained or lost, while a value below one suggests an improvement in accuracy
compared to prior knowledge.

For each of the three DGPs we present below, we compare the maximum likelihood estimate
of the parameters to that of the TCNs and LSTMs detailed in Section 3. We do so using
four sample sizes for each process: T ∈ {100, 200, 400, 800}, and each approach is evaluated
on the same n = 5000 test samples. As MLE is a

√
n-consistent estimator, by doubling the

sample size, we expect the metrics to decrease by a factor 1√
2
, or approximately 30%.

4.1 MA(2)

One of the examples that has been widely used in the literature on parameter estimation
using neural networks (Akesson et al., 2021; Creel, 2017; B. Jiang et al., 2017; Wiqvist et al.,
2019) is a moving average model of order 2 (MA(2)). We use this same model, to facilitate

12See Appendix C for the detailed derivation of this factor on a single component of the parameter vector.

12

comparing our methods with previous results. Data is generated by the model

(5)
yt = ut + θ1ut−1 + θ2ut−2, ut ∼ N (0, 1)

θ1 ∈ [−2, 2], θ2 ∈ [−1, 1], θ2 ± θ1 ≥ −1.

The parameter restrictions define the invertible region, and the prior of θ = (θ1, θ2)
⊤ is a

uniform distribution over this region.

The results for this DGP are illustrated in the first third of Table 2. We observe that the
metrics for the MLE decrease with sample size, as expected from

√
n-consistent estimators.

While the LSTM achieves the lowest absolute bias for T = 200, it is outperformed by MLE
or TCN everywhere else. In particular, the TCN displays an edge across all metrics over
MLE for the smallest sample size. However, as the sample size grows, MLE achieves better
results, with the TCN being relatively close.

4.2 Logit

In order to have an example typical of cross-sectional models, we consider the simple logit
model. The logit model generates data according to

yt = 1

(
εt <

1

1 + exp(−x⊤
t θ)

)
, εt ∼ N (0, 1)

where 1(·) is the indicator function. Our DGP specifies a regressor vector xt ∈ R3 that
comprises three independent standard normal draws. The prior for the parameter θ is also
a vector of three independent standard normal draws.

As reported in the middle third of Table 2, we obtain a similar pattern for the Logit model
as we did for the MA(2) model. TCN and MLE generally outperform the LSTM, with the
TCN achieving the best RMSE and NMAE for all but the largest sample size. Even in
our largest sample, T = 800, the results of the TCN are particularly close to that of MLE.
However, considering the absolute bias, we find MLE to perform significantly better except
for the smallest sample size, T = 100.

13

4.3 GARCH(1,1)

The standard GARCH(1,1) model (Bollerslev, 1986; Engle, 1982) is given by

yt =
√

htεt, εt ∼ N (0, 1)

ht = ω + αε2t−1 + βht−1

For computational simplicity, we parameterize the model as θ = (v, ϕ, π)⊤, where v = ω/(1−
(α+β)) is the long-run variance, ϕ = α+β is the sum of the two underlying parameters, and
π = β

α+β
is the share of β. This reparametrization allows us to define an independent uniform

prior distribution for each parameter while respecting the stationarity constraints and being
able to recover the original underlying parameters using ω = (1 − ϕ)v, α = (1 − π)ϕ, and
β = πϕ. The prior on θ is v ∼ Unif(0.001, 1), ϕ ∼ Unif(0, 0.99), and π ∼ Unif(0, 1). The
prior for v ensures that the long-run variance is reasonable for financial series, and the priors
on ϕ and π ensure that the model is stationary.

In contrast to the other two DPGs, we find that, while the metrics for MLE decline as
the sample size grows, they do so slower than expected for a

√
n-consistent estimator. This

discrepancy is explained by the fact that the MLE is often on the bounds of the parameter
space, which are imposed in estimation, which occurs especially frequently for the smaller
sample sizes. Because the restrictions bind more often for smaller sample sizes, RMSE
and NMAE in those cases are smaller than what they would be if we used an unrestricted
ML estimator. We impose the true restrictions that reduce RMSE and NMAE for the ML
estimator to make the comparison with the neural network estimators fair since they also
use the restrictions implied by the prior’s support. The TCN comfortably outperforms other
estimators for all metrics and sample sizes, achieving a bias an order of magnitude smaller
and roughly 30% less RMSE and NMAE than the MLE across the board. We also note that
while the LSTM performs significantly worse than the TCN, it surpasses MLE everywhere.

14

M
A

(2
)

A
bs

ol
ut

e
bi

as
R

oo
t-

m
ea

n-
sq

ua
re

er
ro

r
N

or
m

al
iz

ed
m

ea
n

ab
so

lu
te

er
ro

r
T
=

10
0

T
=

20
0

T
=

40
0

T
=

80
0

T
=

10
0

T
=

20
0

T
=

40
0

T
=

80
0

T
=

10
0

T
=

20
0

T
=

40
0

T
=

80
0

M
LE

0.
01
15
5

0.
00
51
6

0.
00
21
9

0.
00
09
1

0.
10
29
6

0.
06
41
0

0.
04
23
5

0.
02
99
8

0.
12
11
6

0.
07
56
9

0.
04
96
8

0.
03
48
7

T
C

N
0.
00
23
7

0.
00
41
5

0.
00
13
3

0.
00
10
2

0.
09
02
6

0.
06
40
5

0.
04
42
5

0.
03
22
5

0.
10
68
0

0.
07
63
7

0.
05
25
4

0.
03
80
9

LS
T

M
0.
00
35
6

0.
00
03
7

0.
00
36
9

0.
00
40
6

0.
14
91
2

0.
10
40
5

0.
07
03
7

0.
04
94
8

0.
17
78
7

0.
12
45
8

0.
08
43
1

0.
05
91
1

Lo
gi

t
A

bs
ol

ut
e

bi
as

R
oo

t-
m

ea
n-

sq
ua

re
er

ro
r

N
or

m
al

iz
ed

m
ea

n
ab

so
lu

te
er

ro
r

T
=

10
0

T
=

20
0

T
=

40
0

T
=

80
0

T
=

10
0

T
=

20
0

T
=

40
0

T
=

80
0

T
=

10
0

T
=

20
0

T
=

40
0

T
=

80
0

M
LE

0.
00
49
2

0.
00
31
6

0.
00
33
6

0.
00
03
8

0.
38
58
2

0.
24
91
4

0.
17
26
4

0.
11
91
5

0.
36
15
0

0.
24
02
3

0.
16
80
3

0.
11
61
7

T
C

N
0.
00
34
2

0.
01
39
6

0.
00
62
0

0.
00
66
0

0.
31
82
8

0.
23
25
9

0.
16
60
4

0.
11
98
5

0.
31
21
5

0.
22
82
6

0.
16
27
3

0.
11
66
7

LS
T

M
0.
00
79
7

0.
01
22
4

0.
00
30
9

0.
00
78
1

0.
43
81
7

0.
33
19
5

0.
24
13
2

0.
17
96
3

0.
42
83
7

0.
32
43
8

0.
23
48
0

0.
17
41
2

G
A

R
C

H
(1

,
1)

A
bs

ol
ut

e
bi

as
R

oo
t-

m
ea

n-
sq

ua
re

er
ro

r
N

or
m

al
iz

ed
m

ea
n

ab
so

lu
te

er
ro

r
T
=

10
0

T
=

20
0

T
=

40
0

T
=

80
0

T
=

10
0

T
=

20
0

T
=

40
0

T
=

80
0

T
=

10
0

T
=

20
0

T
=

40
0

T
=

80
0

M
LE

0.
03
40
5

0.
02
02
4

0.
02
40
1

0.
02
46
7

0.
29
09
1

0.
26
31
1

0.
23
40
0

0.
21
02
9

0.
84
54
7

0.
72
79
0

0.
61
10
3

0.
51
51
5

T
C

N
0.
00
25
5

0.
00
19
4

0.
00
24
2

0.
00
43
7

0.
19
75
7

0.
17
35
7

0.
15
53
6

0.
13
63
6

0.
62
49
4

0.
53
18
3

0.
45
56
6

0.
38
71
2

LS
T

M
0.
01
33
0

0.
01
13
4

0.
01
22
8

0.
01
52
9

0.
21
65
3

0.
19
50
2

0.
17
58
7

0.
15
64
9

0.
70
17
9

0.
61
69
8

0.
53
94
9

0.
45
75
6

T
ab

le
2:

A
bs

ol
ut

e
bi

as
,

R
M

SE
,

an
d

N
M

A
E

Ea
ch

m
et

ric
is

co
m

pu
te

d
el

em
en

t-
w

ise
.

T
he

ta
bl

e
re

po
rt

s
th

e
av

er
ag

e
ov

er
th

e
el

em
en

ts
of

th
e

pa
ra

m
et

er
ve

ct
or

θ,
an

d
th

e
lo

w
es

t
va

lu
es

fo
r

ea
ch

sa
m

pl
e

siz
e

an
d

m
et

ric
ar

e
hi

gh
lig

ht
ed

in
gr

ay
.

15

5 Empirical Example: A Jump-Diffusion Model for S&P 500
Data

This section presents an example of a computationally challenging model that better reflects
real-world research problems: estimating a jump-diffusion model of S&P 500 returns. This
example aims to demonstrate the feasibility of the methods for moderately complex models.
We train a TCN to recognize the parameters that generated a sample from a jump diffusion
model. We then use the output of the neural network to define moment conditions for
Bayesian Limited Information estimation (Kwan (1999), Kim (2002)), implemented using
Markov chain Monte Carlo sampling, as proposed by Chernozhukov and Hong (2003). We
refer to this procedure as Bayesian MSM estimation. The jump-diffusion model we use is
the same as was used in Creel (2021), who explored FNNs, based on summary statistics to
define moment conditions for Bayesian MSM estimation. In contrast, our paper proposes
methods that do not necessitate the specification of summary statistics, the TCN constructs
the statistics for the Bayesian MSM procedure directly from the sample.

5.1 The Jump-Diffusion Model

The following equations describe the jump-diffusion model:

dpt = µ dt+
√
expht dW1t + Jt dNt

dht = κ(α− ht) + σ dW2t.

Here pt is 100 times the logarithmic price, ht is the logarithmic volatility, Jt is the jump size,
and Nt is a Poisson process with jump intensity λ0. The stochastic processes W1t and W2t

are two standard Brownian motions with correlation ρ. Whenever a jump occurs, its size is
determined by Jt = aλ1

√
expht, where a is either +1 or −1, with an equal probability of 0.5.

Hence, the jump size depends on the current standard deviation, and positive and negative
jumps are equiprobable.

The model is solved on a continuous time 24-hour basis, encompassing both trading and
non-trading days, using the SRIW113 solver. To account for potential measurement error,

13In particular, we use the SRIW1 strong order 1.5 solver from the DifferentialEquations.jl package for

the Julia language (Rackaukas & Nie, 2017).

16

https://github.com/SciML/DifferentialEquations.jl

we introduce the concept of observed log price, denoted as p∗t . It is defined as the true log
price, pt, with the addition of measurement error: p∗t = pt + νt, where νt ∼ N(0, τ 2). We
consider cases where τ can be either positive or zero, allowing for scenarios with or without
measurement error. Observed log price, p∗t , is sampled at 10-minute ticks during the trading
hours of trading days, and these intra-day observations are used to compute daily realized
volatility (RV) and daily bipower variation (BV). At the close of trading days, we record the
observed log price, RV, and BV values. The model generates 1 000 daily observations for
returns, RV, and BV. Returns are calculated as the daily first difference of the observed log
price. Due to the logarithmic scaling of the price by 100, returns are expressed on a daily
percentage basis. With these three variables (returns, RV, and BV), we aim to estimate the
eight parameters: θ = (µ, κ, α, σ, ρ, λ0, λ1, τ).

5.2 Data

We use two overlapping samples from the SDPR S&P 500 ETF Trust (SPY), an exchange-
traded fund that tracks the S&P 500 stock index. We obtain the data from the NYSE Trade
and Quote (TAQ) database following the procedure outline in Barndorff-Nielsen et al. (2009)
to aggregate the data into 10-minute intervals. The first sample spans from December 17,
2013, to December 5, 2017, and the second sample spans from January 12, 2016 to December
31, 2019. We choose these time windows such that each sample encompasses 1 000 trading
days, which aligns with the sequence length generated by the model. Figure 4 visualizes
the data, where we can observe volatility clusters and apparent jumps. The presence of
spikes in RV and BV during periods of volatility, and the differences between both measures,
highlight the usefulness of employing these intra-day volatility measures for identifying the
jump parameters within the model. Table 3 presents descriptive statistics for the two samples.

2013-12 to 2017-12 2016-01 to 2019-12
Mean Min. 1st Qu. Median 3rd Qu. Max. Mean Min. 1st Qu. Median 3rd Qu. Max.

Returns 0.038 −4.166 −0.279 0.045 0.438 3.825 0.052 −4.199 −0.243 0.059 0.453 4.798
RV 0.335 0.007 0.102 0.196 0.369 9.771 0.400 0.007 0.094 0.182 0.383 7.935
BV 0.326 0.006 0.092 0.185 0.359 9.476 0.392 0.006 0.087 0.171 0.377 8.834

Table 3: Sample average and quartiles of returns, realized volatility (RV) and bipower
variation (BV) for SPY

17

2013-12 2014-06 2014-12 2015-06 2015-12 2016-06 2016-12 2017-06 2017-12 2018-06 2018-12 2019-06 2019-12

-4.0%

-2.0%

0.0%

2.0%

4.0%

Returns

2013-12 2014-06 2014-12 2015-06 2015-12 2016-06 2016-12 2017-06 2017-12 2018-06 2018-12 2019-06 2019-12

0

5

10
Realized Volatility and Bipower Variation

Start of Second Sample End of First Sample

Realized Volatility

Bipower Variation

Figure 4: Returns, realized volatility, and bipower variation for SPY. (2013-
12-17 to 2019-12-31)

5.3 Training the Network

Due to the high dimensionality of the parameter space, we use a Sobol’ sequence (Sobol’,
1967) to draw parameter combinations from the prior distribution and generate the training
data. Table 4 depicts the bounds of the prior for each parameter. While these bounds are
informed by the results of Creel (2021), adjustments have been made for some parameters.
Notably, the lower bound for κ has been slightly increased to mitigate potential numerical
issues arising from excessive persistence in the generated data. Additionally, the upper
bounds for λ0 and τ have been raised based on insights gained from the Markov chain
Monte Carlo (MCMC) sampling process (discussed in detail in Section 5.4.2), as the original
bounds were found to be overly restrictive. Except for λ0 and τ , the remaining parameters
are incorporated into the DGP as described in Section 5.1. However, for λ0 and τ , if a
negative value is drawn from the prior, the parameter is set to zero before generating data.
This particularity enables DGPs without jumps and measurement errors and, effectively, the

18

actual priors for these two parameters possess atoms of probability at zero. This scheme is
used simply for convenience in implementing the code. It is worth mentioning that in cases
where λ0 is negative, the parameter λ1 becomes unidentifiable as no jumps occur.

Parameter µ κ α σ ρ λ0 λ1 τ

Lower bound −0.05 0.01 −6.0 0.1 −0.99 −0.02 2.0 −0.02
Upper bound 0.05 0.30 0.0 4.0 0.50 0.10 6.0 0.20

Table 4: Bounds of uniform priors

The TCN architecture is the one described in Section 2 with 7 temporal blocks to ensure
that the receptive field size exceeds the sequence length of 1 000. We draw roughly 102.4 ·106

parameter combinations using Sobol’ sequences and the bounds in Table 4 to generate train-
ing data. Compared with the 406.9 · 106 draws used for the simpler DGPs as described in
Section 4, we train the network on a significantly smaller number of observations. This is due
to the increased complexity of the DGP, which requires more time to generate data. Since the
parameters are drawn independently from each other, this approach results in some combi-
nations that are not sensible from a financial perspective. To account for this, we discard the
combinations that generate data with extreme values. In particular, we discard combinations
that generate data which exhibits a maximum absolute 10-minute return greater than 100%

or an average RV or BV greater than 50. Lastly, before feeding the data into the network,
we logarithmize the volatility measures and standardize returns, log-RV, and log-BV to have
zero mean and unit variance.

We then fit the TCN to the training data using the best hyperparameters found in Table
8. The mini-batch size of 1 024 implies that the network is fed around 0.1 · 106 mini-batches
before our training data is exhausted. Once the data is exhausted, we proceed with a second
round on the same data. We have found this repeated training to marginally improve the
results without bearing the cost of generating additional data. We use a validation set of
15 000 samples to monitor the training process and keep track of the best model.

19

5.4 Results

5.4.1 TCN Results

While the direct TCN estimate of the parameters, θ̂TCN, is not our final estimate, it is still
of interest to examine its performance. If the network is able to accurately estimate the
parameters, it would provide a strong indication that the statistic is informative and that
the indirect inference procedure is likely to yield good results.

µ κ α σ ρ λ0 λ1 τ

Abs. Bias 0.00049 0.00130 0.00010 0.00420 0.00242 0.00039 0.12571 0.00024
RMSE 0.00832 0.03658 0.24377 0.11405 0.07694 0.01533 0.80229 0.00128
NMAE 0.22309 0.36503 0.11722 0.08548 0.46267 0.61191 0.80395 0.01702

Table 5: Out-of-sample absolute bias, RMSE, and NMAE.

Aggregated performance measures for 5 000 out-of-sample predictions of the TCN.

Table 5 illustrates the out-of-sample performance of the TCN on 5 000 parameter combina-
tions drawn randomly from the prior. Figure 5 displays the actual values of the parameters
against the predicted values for each individual process as well as the estimated kernel density
using a Gaussian kernel. The estimated parameters are close to the actual values, and the
kernel density estimates are centered around the diagonal, indicating evidence that the TCN
is able to accurately estimate the parameters of the jump-diffusion model. The Table and
Figure also reveal that the TCN faces some difficulty in estimating the jump size parameter
λ1. We further investigate this issue by conditioning the λ1 estimates on the true values of
the jump intensity λ0. For values of λ0 smaller than 0.01, we would expect to not observe
any jumps over the course of 1 000 observations, and the jump size parameter would thus
remain unidentifiable14. Figure 6 depicts the estimated λ1 values for different values of λ0.
As expected, the TCN is unable to properly estimate λ1 when λ0 is small. However, for
larger values of λ0, the TCN is able to estimate λ1 with reasonable accuracy.

14Note however, that due to the innate randomness of the jump-diffusion model, there will be processes

where a jump occurs even in the case where λ0 < 0.01 and there will be cases where no jump occurs while

λ0 ≥ 0.01.

20

-0
.0

5
0.

00
0.

05

Predicted Values -0
.0

5

0.
00

0.
05

μ

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

κ

-5
.0

-2
.5

0.
0

-5
.0

-2
.50.
0

α

0
1

2
3

4

01234

σ

T
ru

e
V

al
ue

s
-1

.0
-0

.8
-0

.6

Predicted Values -1
.0

-0
.8

-0
.6

ρ

T
ru

e
V

al
ue

s
0.

00
0.

05
0.

10

0.
00

0.
05

0.
10

λ₀

T
ru

e
V

al
ue

s
2

3
4

5
6

23456

λ₁

T
ru

e
V

al
ue

s
0.

0
0.

1
0.

2

0.
00

0.
05

0.
10

0.
15

0.
20

τ

Normal Kernel Density Estimate

0.
00

0.
02

0.
04

F
ig

ur
e

5:
T

ru
e

va
lu

es
(θ

)
ag

ai
ns

t
pr

ed
ic

te
d

va
lu

es
(θ̂

T
C

N
)

fo
r

th
e

ju
m

p-
di

ffu
si

on
m

od
el

pa
ra

m
et

er
s.

O
ut

-o
f-

sa
m

pl
e

da
ta

w
it

h
5
00

0
ra

nd
om

ly
dr

aw
n

pa
ra

m
et

er
co

m
bi

na
ti

on
s

fr
om

th
e

pr
io

r
in

T
ab

le
4.

21

5.4.2 The Bayesian MSM Procedure

The direct TCN estimate, θ̂TCN, is a statistic representing the output of a finite-dimensional
function derived from the available data. Consequently, it does not fall under the category
of extremum estimators, and its distribution is unknown, making the direct application of
frequentist asymptotic theory impossible. In order to facilitate inference, we define moment
conditions that are similar to those of indirect inference (Gourieroux, Monfort, & Renault,
1993)15. The moment conditions are defined as

(6) m(θ) = θ̂TCN − 1

S

S∑
s=1

θ̂
s

TCN(θ),

where the θ̂
s

TCN(θ) terms denote replications of the output of the trained TCN, evaluated us-
ing independent simulated samples, each generated under the DGP at the parameter θ. The
sample statistic, θ̂TCN, obtained from the observed data, is assumed to have been generated
by the DGP at the true parameter value, θ0.

Kwan (1999) and Kim (2002) show how a limited information likelihood function may be
constructed based upon moment conditions. These results require assumptions such that a
central limit theorem will apply to the moment conditions, uniformly in a neighborhood of θ0.

We will proceed, without proof, as if these assumptions hold, for the moment conditions in (6).
Some support for the validity of this speculation is in the results presented by Creel (2021),
where confidence intervals based on similar methods exhibit accurate coverage. However, it is
important to note that the asymptotic theory for estimators relying on deep neural networks
to obtain parametric estimates is currently an active area of research (e.g., Farrell, Liang, &
Misra, 2021).

Under the aforementioned assumptions, we can define the Bayesian limited information

15While the work by Gourieroux, Monfort, and Renault (1993) primarily focuses on extremum estimators

derived from an auxiliary model, W. Jiang and Turnbull (2004) highlight how the statistic (in our case θ̂TCN)

can also be an explicit function of the data. This broader perspective allows for a more flexible application of

the indirect inference framework, accommodating scenarios where the statistic of interest is directly computed

from the available data.

22

log-likelihood as:

(7) Ln(θ) = −1

2
n ·m(θ)⊤Σ̂(θ)−1m(θ),

where Σ̂(θ) is a continuously updated estimator of Σ(θ) = limn→∞ Var (
√
nm(θ)). This

criterion aligns with those examined by Chernozhukov and Hong (2003) (specifically, Section
4.1). Leveraging the methods proposed in that paper, we can now conduct inference on θ0.
The inference procedure employs ordinary MCMC techniques, wherein the acceptance or
rejection step is based on treating (7) as the log-likelihood function.

To obtain an estimator of Σ(θ), first consider the following expression:

Var
(√

nm(θ0)
)
= Var

(
√
nθ̂TCN − 1

S

S∑
s=1

√
nθ̂

s

TCN(θ0)

)

=

(
1 +

1

S

)
Var

(√
nθ̂TCN

)
,

where the simplification is due to the θ̂TCN and θ̂
s

TCN variables being independent and iden-
tically distributed. To estimate Var

(√
nθ̂TCN

)
, we employ the sample covariance of a large

number of independent and identically distributed draws of
√
nθ̂

s

TCN(θ), where s = 1, . . . , S,
and θ is the value currently being considered for the unknown θ0.

In summary, the steps involved in our Bayesian MSM procedure are as follows:

1. Obtain θ̂TCN from the neural network, and set the initial value of the MCMC chain,
θ(1), to this value.

2. Define the symmetric random walk proposal distribution θ∗ ∼ N(θ(i), tΣp), where θ∗

represents the proposal, θ(i) is the current value in the Markov chain, and t is a scalar
tuning parameter for the proposal density. Σp, the proposal covariance, is the sample
covariance of a large number of draws of

√
nθ̂

s

TCN(θ
(1)).

3. Draw a Markov chain using the Metropolis-Hastings acceptance/rejection algorithm,
using the proposal distribution from step 2.

4. Check for convergence of the chain. If this is the case, stop. Otherwise, re-initialize the
chain, setting θ(1) to the mean of the previous chain (dropping a burnin proportion from
the initial part of the chain), adjust the tuning parameter t to improve the acceptance

23

rate, if needed, and go to step 3.

5.4.3 The Bayesian MSM Results

Table 6 presents the posterior means and medians of the final MCMC chain, along with the
corresponding quantiles that define the 95% confidence intervals, following the procedure of
Chernozhukov and Hong (2003). Figure 7 illustrates the posterior densities and highlights
the 95% confidence intervals for the parameters of interest, for the two samples. We see how
the drift parameter, µ, increases when moving from the first sample to the second one, which
is consistent with the fact that returns are typically higher in the second sample (see Table
3). Likewise, the mean volatility, α, and the variance of the volatility, σ, are higher in the
second sample, which also aligns with the higher intra-day average measures of volatility in
the second sample. The jump frequency parameter, λ0, is also higher in the second sample,
which appears reasonable considering Figure 4. The measurement error, τ , is a significant
factor in both sample periods.

2013-12 to 2017-12 2016-01 to 2019-12
Mean Median 2.5% 97.5% Mean Median 2.5% 97.5%

µ −0.01454 −0.01445 −0.03639 0.00710 −0.00509 −0.00451 −0.02922 0.01780
κ 0.17403 0.17330 0.14237 0.21043 0.17166 0.17080 0.13522 0.21434
α −1.19645 −1.19032 −1.52353 −0.91770 −1.10610 −1.09599 −1.43820 −0.80754
σ 0.92747 0.92637 0.82753 1.03575 0.95327 0.95118 0.85587 1.05564
ρ −0.79534 −0.79799 −0.85202 −0.71998 −0.73734 −0.73939 −0.82190 −0.64171
λ0 0.00563 0.00470 0.00081 0.01519 0.00798 0.00660 0.00129 0.02332
λ1 3.25268 2.99758 2.03745 5.68069 2.89514 2.66586 2.02759 4.95701
τ 0.03038 0.03043 0.02820 0.03235 0.03243 0.03246 0.03071 0.03422

Table 6: MCMC results for the jump diffusion model on both SPY samples

The MCMC results further allow us to explore relationships between the parameters. Fig-
ure 8 depicts the contours of the joint posterior densities of µ and α, and that of σ and τ , for
the two samples. We observe that larger values of the drift parameter, µ, are associated with
lower values of mean volatility, σ. This suggests that the two parameters act as substitutes,
to a certain extent, in the model, and that it is relatively difficult to isolate the effects of
each parameter. This is not suprising, as, through the leverage effect, higher returns due to
a positive exogenous shock are associated with a lower volatility, because the shocks to price
and volatility are strongly negatively correlated, as indicated by the value of the parameter

24

ρ. Likewise, we see that measurement error, τ , acts as a partial complement to the variance
of volatility, σ. While this relationship has a less obvious explanation, our goal here is to
highlight how the MCMC methodology offers a convenient way to explore and identify the
existence of such relationships.

5.4.4 Comparison with Standard Moments

Lastly, we conclude this section by comparing our TCN-based moments to more conventional
moments, based on low-order statistics of the data. This comparison contrasts the Bayesian
Method of Simulated Moments (MSM) estimator, with TCN-based moments against a set
of moments utilizing a vector of empirical sample moments in place of the TCN-fitted pa-
rameters. The latter comprises 12 elements, encapsulating means, standard deviations, and
first-order autocorrelations for each of the three model-generated variables, in addition to
the three correlations across variable pairs.

We generate 100 samples from the jump-diffusion model, adopting the parameter values
from the posterior means listed in the first column of Table 6 as the true parameter values.
For each of the 100 replications, both MSM variants employ identical proposal densities —the
multivariate normal random walk, as defined in Section 5.4.2. The proposal covariance, Σp,
is derived from the sample covariance of TCN-fitted parameters across 1 000 independent
samples, each based on the true parameter vector. This approach yields a favorable proposal
density, fostering efficient mixing and high acceptance rates. Constructing such a proposal is
straightforward with the TCN estimator but poses challenges for the standard MSM estimator
due to the absence of a robust initial estimate for computing covariance.

We process MCMC chains with a length of 200 post-burn-in for each sample. The pos-
terior mean serve as the point estimator in each chain. This approach results in average
acceptance rates of 27% for the TCN variant and 25% for the standard version. Given our
focus on posterior mean estimation rather than tail behaviors, and the observed satisfactory
acceptance rates, we confine chain lengths to 200.

The ensuing analysis, summarized in Table 7, indicates that both estimators exhibit compa-
rable bias. However, the RMSE is consistently lower for the TCN-based estimator, averaging
73% of that observed in the standard variant. This experiment thus underscores the efficiency
of estimation when employing TCN-based moments compared to standard moments.

25

Standard Moments TCN Moments
Parameter Bias RMSE Bias RMSE

µ 0.003 0.015 -0.002 0.011
κ 0.001 0.021 0.005 0.018
α -0.072 0.212 0.023 0.142
σ 0.021 0.077 0.005 0.057
ρ -0.008 0.047 0.006 0.032
λ0 0.004 0.006 0.002 0.005
λ1 0.325 0.800 0.065 0.636
τ 0.000 0.001 -0.000 0.001

Table 7: Comparison of standard and TCN moments for the jump diffusion model over
100 replications.

6 Conclusion

In this study, we introduce a novel approach to estimating model parameters within simulation-
based econometric frameworks. Utilizing deep learning methods, our method circumvents
the difficulties tied to the specification and selection of optimal moments commonly found
in traditional methodologies. Our empirical results affirm that the TCN-constructed mo-
ment conditions outperform previously used network architectures and are competitive with
maximum likelihood estimators, when the likelihood is tractable.

The marriage of deep learning and simulation-based methods enables efficient statistical
inference, owing to the rich and varied datasets generated through simulation. Post-training,
our method produces these moment conditions at a minimal computational cost, making
it highly suitable for scenarios requiring frequent parameter recalibration, a scenario where
maximum likelihood methods falter due to their computational expense.

While promising, our results come with caveats. A pressing issue is the theoretical vali-
dation of our approach, especially concerning the assumed applicability of the Central Limit
Theorem (CLT) to our network-based moment conditions, an assumption, which – while it
appears plausible – has yet to be proven.

To sum up, our study stands as a pioneering effort in the end-to-end application of deep
learning techniques to simulation-based econometrics. We not only showcase the practical
advantages of our method but also highlight the need for robust theoretical frameworks that

26

can substantiate the empirical strengths we have demonstrated.

References

Akesson, M., Singh, P., Wrede, F., & Hellander, A. (2021). Convolutional Neural Networks
as Summary Statistics for Approximate Bayesian Computation. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 14 (8).

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2009). Realized kernels
in practice: Trades and quotes. Econometrics Journal, 12 (3).

Blum, M. G., & François, O. (2010). Non-linear regression models for Approximate Bayesian
Computation. Statistics and Computing, 20 (1), 63–73.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31 (3), 307–327.

Bucci, A. (2020). Realized Volatility Forecasting with Neural Networks. Journal of Financial
Econometrics, 18 (3), 502–531.

Calin, O. (2020). Deep Learning Architectures: A Mathematical Approach. Springer Interna-
tional Publishing.

Carrasco, M. (2012). A regularization approach to the many instruments problem. Journal
of Econometrics, 170 (2), 383–398.

Cheng, X., & Liao, Z. (2015). Select the valid and relevant moments: An information-based
LASSO for GMM with many moments. Journal of Econometrics, 186 (2), 443–464.

Chernozhukov, V., & Hong, H. (2003). An MCMC approach to classical estimation. Journal
of Econometrics, 115 (2), 293–346.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling. arXiv preprint arXiv:1412.3555, 1–
9.

Creel, M. (2017). Neural nets for indirect inference. Econometrics and Statistics, 2, 36–49.

Michael Creel acknowledges financial support from the Spanish Ministry of Science, Innovation and

Universities and FEDER through grant PGC2018-094364-B-100 and from the Spanish Agencia Estatal de

Investigación (AEI), through the Severo Ochoa Programme for Centres of Excellence in R&D (Barcelona

School of Economics CEX2019-000915-S).

27

Creel, M. (2021). Inference using simulated neural moments. Econometrics, 9 (4), 1–15.
DiTraglia, F. J. (2016). Using invalid instruments on purpose: Focused moment selection and

averaging for GMM. Journal of Econometrics, 195 (2), 187–208.
Donald, S. G., Imbens, G. W., & Newey, W. K. (2009). Choosing instrumental variables in

conditional moment restriction models. Journal of Econometrics, 152 (1), 28–36.
Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of United Kingdom Inflation. Econometrica, 50 (4), 987–1007.
Farrell, M. H., Liang, T., & Misra, S. (2021). Deep Neural Networks for Estimation and

Inference. Econometrica, 89 (1), 181–213.
Fisher, T., Luedtke, A., Carone, M., & Simon, N. (2020). Deep Learning for Marginal

Bayesian Posterior Inference with Recurrent Neural Networks.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.
Gourieroux, C., Monfort, A., & Renault, E. (1993). Indirect Inference. Journal of Applied

Econometrics, 8.
Gouriéroux, C., & Monfort, A. (1997). Simulation-based econometric methods. Oxford Uni-

versity Press.
Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recur-

rent neural networks. IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings.

Grazian, C., & Fan, Y. (2020). A review of approximate Bayesian computation methods via
density estimation: Inference for simulator-models. Wiley Interdisciplinary Reviews:
Computational Statistics, 12 (4), 1–16.

Hall, A. R. (2015). Econometricians Have Their Moments: GMM at 32. Economic Record,
91 (S1), 1–24.

Hansen, L. P. (1982). Large Sample Properties of Generalized Method of Moments Estima-
tors. Econometrica, 50 (4), 1029–1054.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition, 770–
778.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9 (8), 1735–1780.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. International conference on machine learning, 1,
448–456.

28

Jiang, B., Wu, T. Y., Zheng, C., & Wong, W. H. (2017). Learning summary statistic for
approximate Bayesian computation via deep neural network. Statistica Sinica, 27 (4),
1595–1618.

Jiang, W., & Turnbull, B. (2004). The indirect method: Inference based on intermediate
statistics-a synthesis and examples. Statistical Science, 19 (2), 239–263.

Kim, J. Y. (2002). Limited information likelihood and Bayesian analysis. Journal of Econo-
metrics, 107 (1-2), 175–193.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. Advances in Neural Information Processing Systems,
25.

Kwan, Y. K. (1999). Asymptotic Bayesian analysis based on a limited information estimator.
Journal of Econometrics, 88 (1), 99–121.

McFadden, D. (1989). A Method of Simulated Moments for Estimation of Discrete Response
Models Without Numerical Integration. Econometrica, 57 (5), 995–1026.

Pakes, A., & Pollard, D. (1989). Simulation and the Asymptotics of Optimization Estimators.
Econometrica, 57 (5), 1027–1057.

Rackaukas, C., & Nie, Q. (2017). DifferentialEquations.jl - a performant and feature-rich
ecosystem for solving differential equations in Julia. Journal of Open Research Soft-
ware, 5.

Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. Advances in Neural Information Pro-
cessing Systems, 901–909.

Sisson, S. A., Fan, Y., & Beaumont, M. (Eds.). (2018). Handbook of Approximate Bayesian
Computation. Taylor & Francis.

Smith, A. A. (1993). Estimating Nonlinear Time-Series Models Using Simulated Vector Au-
toregressions. Journal of Applied Econometrics, 8, 63–84.

Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics, 7 (4), 86–
112.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learn-
ing Research, 15, 1929–1958.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural
networks. Advances in neural information processing systems, 27.

29

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner,
N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw
Audio. arXiv preprint arXiv:1609.03499.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,., &
Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Pro-
cessing Systems, 2017-Decem(Nips), 5999–6009.

Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image
caption generator. Proceedings of the IEEE conference on computer vision and pattern
recognition, 3156–3164.

Wiqvist, S., Mattei, P. A., Picchini, U., & Frellsen, J. (2019). Partially exchangeable networks
and architectures for learning summary statistics in approximate Bayesian computa-
tion. International Conference on Machine Learning, 6798–6807.

30

A Hyperparameter Tuning

TCN LSTM
Hyperparameter Chosen values Candidate values

Mini-batch size 1 024 1 024 32, 64, 128, 256, 512, 1 024, 2 048
Optimizer AdamW AdamW Adam, AdamW, RMSProp, AdaGrad

Learning rate 10−3 10−3 5 · 10−3, 10−3, 5 · 10−4, 10−4

TCN-specific
Channels 32 2, 4, 8, 16, 32, 64

Dilation factor 2 2, 4, 8, 16
Kernel width 32 2, 4, 8, 16, 32, 64

Residual connection True False, True

LSTM-specific
LSTM Layers 2 1, 2, 3

Nodes 32 8, 16, 32, 64

Table 8: Candidate and chosen hyperparameters values

B Plots

31

T
ru

e
V

al
ue

s
2

4
6

Predicted Values 246

λ₁
 (λ

₀
<

0.
01

)

T
ru

e
V

al
ue

s
2

3
4

5
6

23456

λ₁
 (λ

₀
≥

0.
01

)

Normal Kernel Density Estimate

0.
00

0.
02

0.
04

F
ig

ur
e

6:
T

ru
e

va
lu

es
ag

ai
ns

t
pr

ed
ic

te
d

va
lu

es
fo

r
th

e
ju

m
p

si
ze

pa
ra

m
et

er
λ
1

co
nd

it
io

na
lo

n
th

e
ju

m
p

in
te

ns
it

y
λ
0
.

32

-0
.0

4
-0

.0
2

0.
00

0.
02

0.
04

0102030

μ

0.
10

0.
15

0.
20

0.
25

05101520

κ

-1
.5

-1
.0

-0
.5

012

α

0.
8

1.
0

1.
2

02468

σ

-0
.9

-0
.8

-0
.7

-0
.6

0510

ρ

0.
00

0.
01

0.
02

0.
03

05010
0

λ₀

2
3

4
5

6

0.
0

0.
2

0.
4

0.
6

0.
8

λ₁

0.
02

75
0.

03
00

0.
03

25
0.

03
50

0

10
0

20
0

30
0

40
0

τ

Fi
rs

t S
am

pl
e

(2
01

3-
12

 to
 2

01
7-

12
)

Se
co

nd
 S

am
pl

e
(2

01
6-

01
 to

 2
01

9-
12

)

F
ig

ur
e

7:
P

os
te

ri
or

de
ns

it
ie

s
w

it
h

hi
gh

lig
ht

ed
95

%
co

nfi
de

nc
e

in
te

rv
al

s
fo

r
th

e
pa

ra
m

et
er

of
th

e
ju

m
p-

di
ffu

si
on

m
od

el
fo

r
bo

th
SP

Y
da

ta
sa

m
pl

es
.

33

μ
-0

.0
4

-0
.0

2
0.

00
0.

02

α -1
.7

5

-1
.5

0

-1
.2

5

-1
.0

0

-0
.7

5

20
13

-1
2

to
 2

01
7-

12
(μ

 v
s.

 α
)

μ
-0

.0
25

0.
00

0
0.

02
5

α -1
.5

0

-1
.2

5

-1
.0

0

-0
.7

5

20
16

-0
1

to
 2

01
9-

12
 (μ

 v
s.

 α
)

σ
0.

8
0.

9
1.

0
1.

1

τ 0.
02

75

0.
03

00

0.
03

25

20
13

-1
2

to
 2

01
7-

12
 (σ

 v
s.

 τ
)

σ
0.

8
0.

9
1.

0
1.

1

τ 0.
03

0

0.
03

2

0.
03

4

20
16

-0
1

to
 2

01
9-

12
 (σ

 v
s.

 τ
)

Joint Density

0.
0

0.
5

1.
0

F
ig

ur
e

8:
Se

le
ct

ed
bi

va
ri

at
e

po
st

er
io

r
de

ns
it

ie
s

fo
r

th
e

ju
m

p-
di

ffu
si

on
m

od
el

fo
r

bo
th

SP
Y

da
ta

sa
m

pl
es

.

34

C Normalized Mean Absolute Error Derivation

This Appendix derives the normalizing factor in the normalized mean absolute error formula
(4).

In our experiments, the parameters are randomly drawn from a pre-specified distribution.
In the case of the GARCH(1,1) and MA(2), the parameters we use follow a uniform distribu-
tion, while they follow a standard normal distribution for the Logit DGP. The normalizing
factor in (4) is the expected mean absolute error one makes when using the prior mean of
the parameter as an estimate for the true parameter value.

C.1 Uniform distribution

Let the parameter θ follow a uniform distribution on [a, b]. The expected mean absolute error
of the prior mean θ̂ = E[θ] = a+b

2
is given by

E
[∣∣∣θ̂ − θ

∣∣∣] = ∫ b

a

∣∣∣θ̂ − θ
∣∣∣ · 1

b− a
dθ

=

∫ θ̂

a

(
θ̂ − θ

)
· 1

b− a
dθ +

∫ b

θ̂

(
θ − θ̂

)
· 1

b− a
dθ

= −

(
θ̂ − θ

)2
2(b− a)

∣∣∣∣∣
θ̂

a

+

(
θ − θ̂

)2
2(b− a)

∣∣∣∣∣
b

θ̂

=

(
a+b
2

− a
)2

+
(
b− a+b

2

)2
2(b− a)

=

(
b−a
2

)2
b− a

=
b− a

4
,

thus, when θ ∼ Unif[a, b], we obtain the normalizing factor

γ(θ) =
4

b− a
.

35

C.2 Standard normal distribution

Let the parameter θ follow a normal distribution with mean 0 and variance 1. The expected
mean absolute error of the prior mean θ̂ = E[θ] = 0 is given by

E
[∣∣∣θ̂ − θ

∣∣∣] = ∫ ∞

−∞

∣∣∣θ̂ − θ
∣∣∣ · 1√

2π
e−

θ2

2 dθ

=
1√
2π

(∫ 0

−∞
−θe−

θ2

2 dθ +

∫ ∞

0

θe−
θ2

2 dθ

)
=

2√
2π

∫ ∞

0

θe−
θ2

2 dθ

=
2√
2π

e−
θ2

2

∣∣∣∣∞
0

=

√
2

π
,

thus, when θ ∼ N(0, 1), we obtain the normalizing factor

γ(θ) =

√
π

2
.

D Neural Network Definitions

This Appendix provides formal definitions for the neural network topologies used throughout
the paper. The following contents build upon Calin (2020) and Goodfellow, Bengio, and
Courville (2016), and the interested reader is referred to these works for a more in-depth
discussion of the deep learning topologies that follow.

D.1 Feedforward Neural Networks

Feedforward neural networks (FNNs), often dubbed multilayer perceptrons (MLPs), are the
most straightforward neural network family. While we do not use FNNs in this work, it is
beneficial to provide a short definition as their building blocks are ubiquitous and lay the
foundation for the more advanced topologies we present.

FNNs comprise L ∈ N layers that each combine affine transformations and so-called acti-
vation functions. Each layer can be viewed as a map g : RNI → RNO , where NI , NO ∈ N are

36

the layer’s input and output vectors dimensions’ respectively.

Definition D.1 (Activation function). An activation function is a map ϕ : R → R that is
differentiable almost everywhere.

Definition D.2 (Dense layer). Let NI , NO ∈ N be the input and output vectors’ dimensions,
respectively. Let W ∈ RNO×NI be the layer’s weights, b ∈ RNO be the layer’s biases, and ϕ

be an activation function. A dense layer is a map g : RNI → RNO given by

g(x) = ϕ (Wx+ b) ,

where ϕ is applied element-wise, and x ∈ RNI is the input data.

Definition D.3 (FNN). Let L ∈ N be the number of layers of an FNN, let gℓ be the ℓth

layer of the FNN (ℓ = 1, . . . , L), and let N
(ℓ)
I , N

(ℓ)
O ∈ N be the dimensions of the input and

output vectors for the ℓth layer. An FNN is a map f : RN
(1)
I → RN

(L)
O defined by

f(x) = gL ◦ gL−1 ◦ · · · ◦ g2 ◦ g1(x),

where ◦ denotes the composition operator for functions and x ∈ RN
(1)
I is the input data of

the FNN.

Notice that the above definition allows each layer to have a different number of inputs and
outputs as well as individual activation functions. A deep FNN creates a progressively more
abstract reparametrization of the input data by passing it through a series of alternating
affine transformations and nonlinear functions.

D.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks particularly well-suited
for processing sequential data. Compared to FNN, RNNs can easily accommodate variable-
length data sequences without modifying the network architecture. Consider that we now
observe a sequence of input vectors {x(t) : t = 1, . . . , T}. While it is theoretically possible to
fit an FNN to this input, this network will struggle to capture the information that might be
encoded in the time dimension of this sequence.

Conversely, RNNs process every input x(t) in a sequential manner. One key component is
their so-called hidden state, a vector of weights encapsulating past information and updating

37

itself as the network processes the sequence step by step. This hidden state allows the network
to extract and keep track of sequential information from the data.

Definition D.4 (Recurrent layer). Let NI , NH , NO ∈ N be the dimensions of input, hidden,
and output vectors. Let WI ∈ RNH×NI , U ∈ RNH×NH , and WO ∈ RNO×NH be the weight
matrices parametrizing the input-to-hidden, the hidden-to-hidden, and the hidden-to-output
connections, respectively. Let bH ∈ RNH and bO ∈ RNO be the hidden and output bi-
ases of the layer, and ϕH , ϕO be activation functions. A recurrent layer is a recurrent map
g :

(
RNI

)Z →
(
RNO

)Z given by

h(t) = ϕH

(
Uh(t−1) +WIx

(t) + bH

)
g(x(t)) = ϕO

(
bO +WOh

(t)
)
,

where ϕH and ϕO are applied element-wise.

As this definition illustrates, recurrent layers incorporate a feedback loop. Indeed, as
the data is processed time step by time step, the hidden state h(t) is updated using past
information, and, in turn, the network’s output depends on the hidden state’s current value.
Akin to the FNN, an RNN can be viewed as the composition of multiple layers with at least
one recurrent layer.

Definition D.5 (RNN). Let L ∈ N be the number of layers of an RNN, let gℓ be the ℓth layer
of the RNN (ℓ = 1, . . . , L), and let N (ℓ)

I , N
(ℓ)
O ∈ N be the dimensions of the input and output

vectors for the ℓth layer. An RNN is a recurrent map f :
(
RN

(1)
I

)Z
→
(
RN

(L)
O

)Z
defined by

f(x(t)) = gL ◦ gL−1 ◦ · · · ◦ g2 ◦ g1(x(t)),

where at least one layer gℓ is an RNN layer.

Lastly, we raise two essential points. First, an RNN typically yields one output for each
time step, i.e., it is a sequence-to-sequence model. Fortunately, the RNN can easily be
accommodated to deal with sequence-to-one modeling, e.g., by running the network on the
entire data set and keeping only the final output. Second, recurrent and dense layers are
often combined to build an RNN, e.g., passing the final output through one or many dense
layers. Hence, an RNN can be built using layers defined in D.2 and D.4.

Although RNNs significantly improve over typical FNNs regarding sequence modeling, they
are not without downsides. On the one hand, RNNs cannot benefit from parallelization like

38

other families of networks due to their inherent sequentiality, i.e., it is necessary to compute
the hidden state from the past time step before computing the next one. On the other hand,
RNNs are typically plagued by the problem of vanishing or exploding gradients, which can
make learning challenging, especially as the sequence length of the underlying data grows.

Gated RNNs are an extension of the vanilla RNN topology that aims to tackle the vanishing
and exploding gradients by introducing gating units to help the network forget about less
relevant past information. Long short-term memory networks, introduced by Hochreiter
and Schmidhuber (1997), are a well-established type of gated RNN particularly adapted
to deal with longer input sequences. LSTMs implement forget, update, and output gates.
Furthermore, on top of the hidden state of recurrent layers, LSTMs also include a so-called
cell state.

Definition D.6 (LSTM Layer). Let NI , NO ∈ N be the number of input and output di-
mensions16. Let Uf , Ui, Uo, and Uc ∈ RNO×NI be the weight matrices parametrizing the
connections from the hidden state to the forget, input, and output gates and to the cell state.
Let Wf , Wi, Wo, and Wc ∈ RNO×NI be the analogs for the connections from the input data
to the respective gates and cell state. Let bf , bi, bo, and bc ∈ RN

O denote the biases for each
gate and the cell state. σ(x) = 1

1+e−x is the logistic function, and tanh(x) = ex−e−x

ex+e−x is the
hyperbolic tangent function. The equations that govern the different gates and the cell state
of the LSTM layer are as follows:

f (t) = σ
(
Ufh

(t−1) +Wfx
(t) + bf

)
i(t) = σ

(
Uih

(t−1) +Wix
(t) + bi

)
o(t) = σ

(
Uoh

(t−1) +Wox
(t) + bo

)
c̃(t) = tanh

(
Uch

(t−1) +Wcx
(t) + bc

)
c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ c̃(t)

h(t) = o(t) ⊙ tanh(ct)

The final output of the LSTM layer at each time step t is its hidden state h(t), i.e., an LSTM
layer is a recurrent map g :

(
RNI

)Z →
(
RNO

)Z given by:

g(x(t)) = h(t).

16The dimensions of the hidden state vector match that of the output.

39

The above definition shows that an LSTM layer can only output values in the range (−1, 1).
Due to this, LSTMs typically incorporate additional layers, e.g., a dense layer following the
LSTM layer.

Definition D.7 (LSTM). Let L ∈ N be the number of layers of an LSTM, let gℓ be the ℓth

layer of the RNN (ℓ = 1, . . . , L), and let N
(ℓ)
I , N

(ℓ)
O ∈ N be the dimensions of the input and

output vectors for the ℓth layer. An LSTM is a recurrent map f :
(
RN

(1)
I

)Z
→
(
RN

(L)
O

)Z
defined by

f(x(t)) = gL ◦ gL−1 ◦ · · · ◦ g2 ◦ g1(x(t)),

where at least one layer gℓ is an LSTM layer.

D.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a family of networks that process data using
convolutions. Convolutions are particularly useful to compress information through weighted
averages of local information. While CNNs are typically associated with tasks such as image
recognition, they can also extract patterns from time series data. Convolutional layers are
the defining element of CNNs. Each layer has a kernel that can essentially be seen as a sliding
window computing a weighted average of the surrounding observations.

Definition D.8 (Convolutional layer). Let X =
[
x(1) · · · x(T)

]
∈ RNI×T be the matrix of

the concatenated sequence {x(t) : t = 1, . . . , T}. Let W ∈ RNh×Nw be the convolution’s kernel
with height Nh, and width Nw, where Nh, Nw ∈ N, and let ϕ be an activation function. A
convolutional layer is a map g : RNI×T → R(NI−Nh+1)×(T−Nw+1) such that the element in the
mth row and nth column of the output g(X) is given by

g(X)m,n = ϕ

(
Nh∑
i=1

Nw∑
j=1

Xm−i,n−j ·Wi,j

)
.

Definition D.9 (CNN). Let L ∈ N be the number CNN layers, and gℓ be the ℓth layer of
the CNN (ℓ = 1, . . . , L). The first ℓc < L layers are convolutional (D.8), and the last L− ℓc

layers are dense (D.2). Let vec(·) represent the vectorization of a matrix, i.e., its conversion
to a column vector. Let NI ∈ N be the number of rows in the input matrix X and N

(L)
O ∈ N

be the output dimension of the final dense layer. A CNN is a map f : RNI×T → RN
(L)
O such

40

that
f(X) = gL · · · ◦ gℓc+1 ◦ vec ◦ gℓc ◦ · · · ◦ g2 ◦ g1(X).

Temporal convolutional neural networks are a particular type of CNNs explicitly built to
model time series data. In some cases, the name WaveNet is also used to describe TCNs,
referring to van den Oord et al. (2016), the first work introducing a similar topology. The
so-called causal convolution is the primary mechanism that makes TCNs well-suited for time
series modeling. A causal convolution is similar to the convolution used in typical convolu-
tional layers (D.8).

Definition D.10 (Causal convolutional layer). Let X, W, and ϕ be as in Definition D.8. A
causal convolutional layer with dilation D ∈ N is a map g : RNI×T → R(NI−Nh+1)×(T−D(Nw−1))

such that the element in the mth row and nth column of the output g(X) is given by

g(X)m,n = ϕ

(
Nh∑
i=1

Nw∑
j=1

Xm−i,n−D(Nw−j) ·Wi,j

)
.

Finally, combining causal convolutional layers and dense layers, we obtain the TCN.

Definition D.11 (TCN). Let L ∈ N be the number of layers of a TCN, and gℓ be the ℓth

layer of the TCN (ℓ = 1, . . . , L). The first ℓc < L layers are causal convolutional layers
(D.10), and the last L− ℓc layers are dense (D.2). Let NI ∈ N be the number of rows in the
input matrix X, and N

(L)
O ∈ N be the output dimension of the final dense layer. A TCN is

a map f : RNI×T → RN
(L)
O such that

f(X) = gL · · · ◦ gℓc+1 ◦ vec ◦ gℓc ◦ · · · ◦ g2 ◦ g1(X).

Let Dℓ ∈ N be the dilation of the ℓth layer. A TCN defined such that Dℓ

Dℓ−1
= D ∈ N for all

1 < ℓ ≤ ℓc is said to have a dilation factor of D.

A critical advantage of TCNs is that due to their architecture not implementing any feed-
back loop, they can be parallelized efficiently, providing significant increases in training speed
compared to recurrent architectures. Furthermore, as Definition D.11 and Figure 9 illustrate,
adjusting the kernel width, the number of layers or the dilation factor allows us to easily ac-
commodate the length of the sequence processed by the network. This flexibility marks a
clear advantage for TCNs compared to RNNs and LSTMs when processing longer sequences.
The receptive field of a TCN refers to the lookback window that the network can process.

41

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output Layer
Dilation = 8

Figure 9: TCN with 4 causal convolutional layers with kernels of width 2 and dilation
factor 2, yielding a receptive field size of 16.

For instance, in Figure 9, the TCN has a receptive field size of 16, as the output for time
t+1 takes as input the past 16 values, xt−15, . . . , xt. For a TCN with L causal convolutional
layers, kernel width Nw, and dilation factor D > 1, its receptive field size RFS is given by:

(8) RFS = 1 +
(Nw − 1) ·

(
DL − 1

)
D − 1

42

	Introduction
	Neural Networks for Parameter Estimation
	Neural Network Architectures
	LSTM
	TCN

	Results for Models with Tractable Likelihoods
	MA(2)
	Logit
	GARCH(1,1)

	Empirical Example: A Jump-Diffusion Model for S&P 500 Data
	The Jump-Diffusion Model
	Data
	Training the Network
	Results
	TCN Results
	The Bayesian MSM Procedure
	The Bayesian MSM Results
	Comparison with Standard Moments

	Conclusion
	Hyperparameter Tuning
	Plots
	Normalized Mean Absolute Error Derivation
	Uniform distribution
	Standard normal distribution

	Neural Network Definitions
	Feedforward Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Networks

